Abstract

In this study, for two cases of monolithic 3-dimensional integrated circuit (M3DIC) consisting of vertically stacked feedback field-effect transistors (FBFETs), the variation of electrical characteristics of the FBFET was presented in terms of electrical coupling by using technology computer aided design (TCAD) simulation. In the Case 1, the M3DIC was composed with an N-type FBFET in an upper tier (tier2) and a P-type FBFET in a lower tier (tier1), and in the Case 2, it was composed with the FBFETs of opposite type of the Case 1 on each tier. To utilize the FBFET as a logic device, the study on optimal structure of FBFET was first performed in terms of reducing a memory window. Based on the N-type FBFET, the memory window was investigated with different values of doping concentration and length of channel region divided into two regions. The threshold voltage, capacitance, and transconductance of two cases of M3DIC composed with proposed FBFET were investigated for different thickness of an interlayer dielectric (TILD). In the Case 1, only for reverse sweep, the threshold voltage of FBFET in the tier2 was changed significantly at TILD < 15 nm, and the capacitance and transconductance of FBFET in the tier2 changed significantly at TILD < 20 nm, as bottom gate voltage applied with 0 and 1 V. In the Case 2, the electrical characteristics of FBFET in the tier2 changed greater than Case 1 with different TILD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.