Abstract

Intracellular recordings were made from primary sensory hair cells located on the dorsal side of the anterior crista segment of the squid statocyst. These hair cells were electrophysiologically identified by the occurrence of an antidromic action potential after electrical stimulation of the crista nerve. Two types of subthreshold, depolarising potentials were observed in the primary sensory hair cells. Firstly, those due to efferent inputs onto the primary hair cells and secondly those correlated one-to-one with action potentials in neighbouring primary hair cells. The former depolarising potentials could be blocked by bath applied cobalt, indicating chemical transmission, while the latter could not. Injection of a depolarising or hyperpolarising current into a primary hair cell depolarised or hyperpolarised, respectively, a neighbouring primary hair cell implying that the hair cells are electrically coupled with an electrical coupling coefficient of up to 0.4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.