Abstract
We present the modeling and analysis of electrical coupling in a hysteretic deformable mirror with 2D memory piezoactuators, which are made of a purposely designed piezomaterial sandwiched between electrodes arranged crosswise and actuated by a multiplexing approach. Using a modified Miller model to describe the memory effect which is based on the ferroelectric domain switching processes, the proposed framework is used to simulate the electric-field dependence of the strain in the piezoelectric material that exhibits asymmetric butterfly loops with remnant deformation through the finite element method. The desired butterfly memory effect in the material is obtained by modifying the saturated dipole polarization curve in the Miller model. The proposed method allows us to numerically investigate the electrical coupling between actuators in more detail and correspondingly understand their influence to the mirror facesheet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.