Abstract

Electric field enhanced electron spin coherence is characterized using time-resolved Faraday rotation spectroscopy in n-type ZnO epilayers grown by molecular beam epitaxy. An in-plane dc electric field E almost doubles the transverse spin lifetime at 20K without affecting the effective g factor. This effect persists until high temperatures, but decreases with increasing carrier concentration. Comparisons of the variations in the spin lifetime, the carrier recombination lifetime, and photoluminescence lifetimes indicate that the applied E enhances the radiative recombination rate. All observed effects are independent of crystal directionality and are performed at low magnetic fields (B<0.2T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.