Abstract

We study the intervalley scattering in defected graphene by low-temperature transport measurements. The scattering rate is strongly suppressed when defects are charged. This finding highlights ``screening'' of the short-range part of a potential by the long-range part. Experiments on calcium-adsorbed graphene confirm the role of a long-range Coulomb potential. This effect is applicable to other multivalley systems, provided that the charge state of a defect can be electrically tuned. Our result provides a means to electrically control valley relaxation and has important implications in valley dynamics in valleytronic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.