Abstract

In a monolayer transition metal dichalcogenide (TMDC) that lacks structural inversion symmetry, spin degeneracy is lifted by strong spin-orbit coupling, and a distinctive spin-valley locking allows for the creation of valley-locked spin-polarized carriers with a circularly polarized optical excitation. When excited carriers also have net in-plane momentum, spin-polarized photocurrents can be generated at ambient temperature without magnetic fields or materials. The behavior of these spin-polarized photocurrents in monolayer TMDC remains largely unexplored. In this work, we demonstrate the tuning of spin-valley photocurrent generated from the circularly polarized photogalvanic effect in monolayer MoS2, including magnitude and polarization degree, by purely electric means at room temperature. The magnitude of spin-polarized photocurrent can be modulated up to 45 times larger, and the polarization degree of the total photocurrent can be tuned significantly (here from 0.5 to 16.6%) by gate control. Combined with the atomic thickness and wafer-scale growth capabilities of monolayer TMDC, the efficient electrical tuning of spin-valley photocurrent suggests a pathway to achieve spin-logic processing by local gate architectures in monolayer opto-spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.