Abstract
The preparation of integrated, electrically contacted, flavoenzyme and NAD(P)(+)-dependent enzyme-electrodes is described. The reconstitution of apo-glucose oxidase, apo-GOx, on a FAD cofactor linked to a pyrroloquinoline quinone (PQQ) phenylboronic acid monolayer yields an electrically contacted enzyme monolayer (surface coverage 2.1 x 10(-)(12) mol cm(-)(2)) exhibiting a turnover rate of 700 s(-)(1) (at 22 +/- 2 degrees C). The system is characterized by microgravimetric quartz-crystal microbalance analyses, Faradaic impedance spectroscopy, rotating disk electrode experiments, and cyclic voltammetry. The performance of the enzyme-electrode for glucose sensing is described. Similarly, the electrically contacted enzyme-electrodes of NAD(P)(+)-dependent enzymes malate dehydrogenase, MalD, and lactate dehydrogenase, LDH, are prepared by the cross-linking of affinity complexes generated between the enzymes and the NADP(+) and NAD(+) cofactors linked to a pyrroloquinoline quinone phenylboronic acid monolayer, respectively. The MalD enzyme-electrode (surface coverage 1.2 x 10(-)(12) mol cm(-)(2)) exhibits a turnover rate of 190 s(-)(1), whereas the LDH enzyme-electrode (surface coverage 7.0 x 10(-)(12) mol cm(-)(2)) reveals a turnover rate of 2.5 s(-)(1). Chronoamperometric experiments reveal that the NAD(+) cofactor is linked to the PQQ-phenylboronic acid by two different binding modes. The integration of the LDH with the two NAD(+) cofactor configurations yields enzyme assemblies differing by 1 order of magnitude in their bioelectrocatalytic activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.