Abstract
Fretting is one of the common phenomena during the use of electrical connectors, which is usually affected by the working environment and has a significant impact on the electrical contact life. In this work, the influence of different fretting wear conditions on electrical contact failure is studied by combining theoretical analysis, finite element simulation and experimental verification. The mechanical and electrical properties are related through experiments in different environments. It can be concluded that the main causes of electrical contact failure are contact structure deterioration and surface coating loss. Increased fretting cycles aggravate the surface fretting wear of high-speed electrical connectors. The failure of electrical connectors can be delayed by a decrease in frequency and amplitude in addition to an increase in coating thickness. The insertion and withdrawal force gradually decreases due to continuous wear. The failure mechanism of electrical contact during wear is also explained. It provides theoretical guidance for predicting the life of electrical connectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.