Abstract

AbstractLow electrical contact resistance is essential for the fabrication of high efficiency thermoelectric generators in order to convert heat to electricity. These contacts must be stable to high temperatures and through thermal cycling. A ratio of the contact resistance to the leg resistance below 0.1 is the goal for fabrication of a high efficiency thermoelectric power generation device. Here we present the fabrication procedures and characterization of contacts of metal alloys to Pb-Sb-Ag-Te (LAST) and Pb-Sb-Ag-Sn-Te (LASTT) compounds. Contacts were fabricated and measured for both ingot and hot pressed materials. Stainless steel 316 has shown a low resistance contact to these thermoelectric materials when the proper bonding conditions are used. Different time-temperature-pressure conditions for bonding to n-type and to p-type legs are presented. Contact resistances below 10μΩcm2 have been measured. In addition, break tests have shown bond strengths exceeding the semiconductor fracture strength. One of the considerations used in selecting iron alloys for electrical interconnects is the similarity in the coefficient of thermal expansion to the LAST and LASTT materials which is 18 ppm/°C and relatively temperature insensitive. Contacts to the thermoelectric materials were accomplished by diffusion bonding in a furnace developed in our lab at Michigan State University. The furnace is capable of reaching temperatures of up to 1000°C with a controlled atmosphere of a reducing gas. Fabrication procedures and contact data are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.