Abstract
In order to investigate the effect of carbonate-content in partial melt on bulk conductivity under high pressure, electrical conductivity measurements were performed on carbonate melt-bearing peridotites using a Kawai-type multi-anvil apparatus. The starting materials were composed of spinel lherzolite (KLB1) with small amounts of dolomite (1 and 3wt.%). To obtain various melt fractions, annealing experiments were performed at different temperatures above 1400K at 3GPa. At low temperatures (⩽1500K), the conductivity was distinctly higher than that of carbonate-free peridotite and close to that of the carbonatite melt-bearing olivine aggregates. Although the sample conductivity increased with increasing temperature, the rate at which the conductivity increases was small and the conductivity approached that of silicate melt-bearing peridotite. CO2 concentration in the partial melt decreased with increasing annealing temperature. Thus, the small increase of the conductivity with annealing temperature is attributed to a decrease of the melt conductivity due to a decrease in carbonate content in the partial melt. As the carbonate concentration in the melt decreases, the estimated melt conductivity approaches that of the basaltic melt. Therefore, conductivity enhancement by the carbonate-bearing melt is very effective at temperature just above that of the carbonate peridotite solidus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.