Abstract

Eclogite is potentially an important constituent in local regions in the deep crust and upper mantle. The electrical conductivity of omphacite and garnet in eclogite has been measured at 1 GPa and 350–800 °C with pre-annealed OH-bearing samples. The conductivities were determined using a piston–cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyser in the frequency range of 106–1 Hz. The sample water contents show almost no change before and after the experimental runs. The conductivity of both omphacite and garnet increases with temperature, and the activation enthalpy is ~ 82 kJ/mol for omphacite and 90 kJ/mol for garnet, which is nearly independent of water content in each mineral. The conduction is probably dominated by protons, and for both minerals, the conductivity increases linearly with water content, with a water content exponent of ~ 1. These data are used to model the bulk conductivity of an eclogite with different water contents and modal compositions. In combination with reported data, the conductivity of the eclogite is similar to that of typical granulites above 600 °C, but is much larger than that of olivine, assuming small to moderate water contents. This would mean that the contribution of eclogites, if present, to the electrical structure of the deep continental crust cannot be easily separated from that of granulites, and that the regional enrichments of eclogites in the upper mantle may cause high electrical anomalies. The results also provide information for the electrical property of orogen-related thickened deep crust where eclogites may be locally abundant, e.g., in the Dabieshan region and the Tibet plateau. At mantle depths, eclogitized portions of subducted slabs are usually of very low conductivities as suggested by geophysical observations, implying small water contents in the constitutive omphacite and garnet and the limited ability of these minerals in recycling water into the deep mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.