Abstract
Three different materials are prepared by chemical reaction route, Sr2NiMoO6 (SNM00), Sr1.96La004NiMoO6 (SLNM04) and Sr1.99Ce0.01NiMoO6 (SCNM01) and conductivity is measured under reducing atmosphere, in order to study their suitability as anode materials in SOFC application. Selected materials correspond to compositions reported with highest conductivity in air at operative temperatures of a SOFC among the systems SLNM (Sr2−xLaxNiMoO6, 0.02 ≤ x ≤ 0.10) and SCNM (Sr2−xCexNiMoO6, 0.01 ≤ x ≤ 0.05). The end member Sr2NiMoO6 (SNM) is also considered as reference.Their conductivities considerably increase in wet hydrogen and follow Arrhenius behavior with lower activation energy. Effects of reduction on microstructure and phase stability are also studied by scanning electron microscopy and X–ray diffraction.The enhancement in conductivity is discussed in terms of defects chemistry. Amongst all measured samples, SLNM04 shows the highest conductivity in reducing atmosphere without phase degradation, which makes it a promising anode material for Solid Oxide Fuel Cells (SOFC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.