Abstract
The short-term changes in the electrical conductivity of Ni–YSZ composites (cermets) suitable for use in Solid Oxide Fuel Cells (SOFC) were measured by an in-situ 4-point DC technique. The isothermal reduction was carried out in dry, humidified or wet hydrogen at temperatures from 600 to 1000 °C. While the cermets reduced at 600 °C showed a stable conductivity of 1000–1200 S/cm, rapid initial conductivity loss was observed at elevated temperatures. At 1000 °C the conductivity degraded nearly instantaneously to about 800 S/cm, and continued to decline fast to about 400 S/cm. At 850 °C, the presence of steam did have an accelerating effect on the conductivity loss. Scanning Electron Microscopy of cermets reduced in different conditions showed increasing particle size and loss of metal-to-metal percolation in the samples reduced at higher temperatures. The short-term changes in conductivity were modelled using two different semi-empirical approaches. Thermodynamic calculations were carried out to assess the vaporisation of Ni in the conditions tested. The rate and mechanisms of conductivity degradation due to Ni particle growth are discussed in light of the measurements, modelling and literature data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.