Abstract
We mimic nanorod-based transparent electrodes as random resistor networks (RRNs) produced by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. We suppose that the number density (the number of objects per unit area of the surface) of these sticks exceeds the percolation threshold, i.e., the system under consideration is a conductor. We computed the electrical conductivity of random resistor networks versus the number density of conductive fillers for the wire-resistance-dominated case, for the junction-resistance-dominated case, and for an intermediate case. We also offer a consistent continuous variant of the mean-field approach. The results of the RRN computations were compared with this mean-field approach. Our computations suggest that, for a qualitative description of the behavior of the electrical conductivity in relation to the number density of conductive wires, the mean-field approximation can be successfully applied when the number density of the fillers n>2n_{c}, where n_{c} is the percolation threshold. However, note the mean-field approach slightly overestimates the electrical conductivity. We demonstrate that this overestimate is caused by the junction potential distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.