Abstract

The effect of Er2O3 addition on electrical conductivity of c-ZrO2 was investigated by analyzing the impedance spectra of undoped and various amounts of Er2O3-doped cubic zirconia (c-ZrO2). The undoped and 1-15 wt% Er2O3-doped c-ZrO2 powders were prepared via colloidal process. The doped powders were then pelletized under a pressure of 200 MPa. In addition, the undoped and Er2O3-doped c-ZrO2 specimens were sintered at 1500 °C for 1 h. The electrical conductivity of the specimens was measured using a frequency response analyzer in the frequency range of 100 mHz-13 MHz, in the temperature range of 300-800 °C. Electrical conductivity results indicate an increase in the conductivity with increase in the test temperature. The addition of 1 wt% Er2O3 into c-ZrO2 led to an increase in the grain interior, grain boundary, and total conductivities. The distortion caused by the addition of Er3+ cations in the c-ZrO2 lattice leads to an increase in the concentration of oxygen vacancies in the c-ZrO2 matrix, resulting in an enhancement in the electrical conductivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.