Abstract

The electrical conductivity of carbon particle-filled polymers was measured as a function of carbon content to find a break point of the relationships between the carbon content and the conductivity. The conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon content corresponding to the break point varies depending on the polymer species and tends to increase with the increase in the surface tension of polymer. In order to explain the dependency of the critical carbon content on the polymer species, a simple equation was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by carbon particles into the polymer matrix reaches a “universal value”, Δg *, the carbon particles begin to coagulate so as to avoid any further increase of the energy and to form networks which facilitate electrical conduction. The equation well explains the dependency through surface tension, as long as the difference of the surface tensions between the carbon particles and the polymer is not very small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.