Abstract

The electrical conductivity of graphene containing point defects is studied within the binary alloy model in its dependence on the Fermi level position at the zero temperature. It is found that the minimal conductivity value does not have a universal character and corresponds to the impurity resonance energy rather than to the Dirac point position in the spectrum. The substantial asymmetry of the resulting dependence of the conductivity on the gate voltage magnitude is attributed as well to this same shift of the conductivity minimum to the resonance state energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.