Abstract

We present cross-sectional conductivity images of two biological tissue phantoms. Each of the cylindrical phantoms with both diameter and height of 140 mm contained chunks of biological tissues such as bovine tongue and liver, porcine muscle and chicken breast within a conductive agar gelatin as the background medium. We attached four recessed electrodes on the sides of the phantom with equal spacing among them. Injecting current pulses of 480 or 120 mA ms into the phantom along two different directions, we measured the z-component Bz of the induced magnetic flux density B = (Bx, By, Bz) with a magnetic resonance electrical impedance tomography (MREIT) system based on a 3.0 T MRI scanner. Using the harmonic Bz algorithm, we reconstructed cross-sectional conductivity images from the measured Bz data. Reconstructed images clearly distinguish different tissues in terms of both their shapes and conductivity values. In this paper, we experimentally demonstrate the feasibility of the MREIT technique in producing conductivity images of different biological soft tissues with a high spatial resolution and accuracy when we use a sufficient amount of the injection current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.