Abstract

AbstractThe carbon nanotubes (CNTs)/rigid polyurethane (PU) foam composites with a low percolation threshold of ∼ 1.2 wt % were prepared by constructing effective conductive paths with homogeneous dispersion of the CNTs in both the cell walls and struts of the PU foam. The conductive foam presented excellent electrical stability under various temperature fields, highlighting the potential applications for a long‐term use over a wide temperature range from 20 to 180°C. Compression measurements and dynamical mechanical analysis indicated 31% improvement in compression properties and 50% increase in storage modulus at room temperature in the presence of CNTs (2.0 wt %). Additionally, the incorporation of only 0.5 wt % CNTs induced remarkable thermal stabilization of the matrix, with the degradation temperature increasing from 450 to 499°C at the 50% weight loss. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.