Abstract

A polymeric hybrid nanocomposite, namely polythiophene tin(IV)phosphate (PTh–SnP), was expediently synthesized by incorporating polythiophene (PTh) in tin phosphate (SnP) to enhance the conducting behavior and sorption of heavy metal ions by porous polymeric cation exchanger. Composite was characterized by Fourier Transform-Infra Red and Transmission Electron Microscopy. The dc electrical conductivity studies carried out on the composite, showed conductivity within the range of 4.0×10−2–1.0×10−3S/cm−1; measured by a 4-in line-probe dc electrical conductivity measuring technique. Ion-exchange kinetics for few divalent metal ions was evaluated by particle diffusion-controlled ion-exchange phenomenon at four different temperatures. The particle diffusion mechanism is confirmed by the linear τ (dimensionless time parameter) vs t (time) plots. The exchange processes thus controlled by the diffusion within the exchanger particle for the systems studies herein. Some physical parameters like self-diffusion coefficient (D0), energy of activation (Ea) and entropy (ΔS°) have been evaluated under conditions favoring a particle diffusion-controlled mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call