Abstract

Electrical conductivity and dielectric measurements of ([C2H10N2]CdCl2(SCN)2)n were carried out from 200 Hz–5 MHz over a temperature range of 307–352 K. The frequency dependence of electrical data have been analyzed in two frameworks: the electrical modulus formalism with the Kohlrausch-Williams-Watts (KWW) stretched exponential function and the electrical conductivity by using the Jonscher’s power law σ′Tot(ω,T) = σDC(T) + A(T)ωs(T) in the frequency domain. The conduction mechanism is attributed to the nonoverlapping small polaron tunneling (NSPT) model. Furthermore, the dielectric data have also been analyzed in modulus and polarizability formalisms. The close values of activation energies obtained from the conductivity, the relaxation process, the electric modulus, and the complex polarizability data confirm that the transport is through ion-hopping mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call