Abstract

The temperature behavior of electrical conductivity of boron nitride nanotubes (6, 0) in the context of Hubbard model at the paramagnetic sector. The effect of electronic correlation on the energy gap of boron nitride nanotube (BNNT) is investigated. Interacting electronic Green's function matrix has been found within GW approximation. Using Kubo formula, electrical conductivity of the system has been calculated. The results show that the band gap in the density of state decreases with Coulomb repulsion strength. Moreover, the increase of electronic correlation leads to decrease electrical conductivity of BNNT. Also the electrical conductivity shows an exponential behavior in terms of temperature at all the values of electron–electron interaction parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.