Abstract

Mn1.85Co0.3Ni0.85O4 (MCN) thin films with pure spinel phase and different grain size were prepared on Al2O3 substrates by chemical deposition method. Temperature dependent ac impedance spectroscopy was employed to analyze the grain size influence on the electrical conduction of intrinsic grain and grain boundary (GB) in MCN thin films. The conduction mechanisms of grain and GB both followed the small-polaron hopping model. It was found that the hopping types of GB (nearest-neighbor-hopping (NNH)) and grain (a transition from variable-range-hopping (VRH) to NNH) were not affected by the grain size, while the resistance, characteristic temperature, and activation energy of grain and GB were affected by the grain size in varying degrees. Additionally, the mechanisms concerning the dependence of electrical conduction of grain and GB on the grain size of MCN thin films were discussed in detail. These studies will also provide a comprehensive understanding of the conduction behaviors of a system with mixed NNH and VRH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.