Abstract
Current–voltage characteristics of Au/YBa2Cu3O interfaces (Au/YBCO), built on optimally-doped YBCO thin films, grown by pulsed laser deposition, were measured as a function of temperature in the 50 K to 270 K range, for two different resistance states. A non-trivial equivalent circuit model is proposed, which reveals the existence of a highly inhomogeneous scenario composed by two complex layers: one presenting both a non-linear Poole–Frenkel conduction as well as variable range hopping localization effects (probably associated with YBa2Cu3O6) mixed with a minor metallic phase, while the other is also composed by a mixture of YBCO with different oxygen contents, where a metallic ohmic phase still percolates. A microscopic description of the effects produced by the resistance switching is given, showing the evolution of carrier traps, localization effects and dielectric behavior for each state. The dielectric behavior is interpreted in terms of a Maxwell–Wagner scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.