Abstract
Electrical conduction in tetragonal β‐Bi2O3 doped with Sb2O3 was investigated by measuring electrical conductivity, ionic transference number, and Seebeck coefficient. The β‐Bi2O3 doped with 1 to 10 mol% Sb2O3 was stable up to 600°C and showed an oxygen ionic and electronic mixed conduction, where the electron conduction was predominant at low oxygen pressures. The oxygen‐ion conductivity showed a maximum at 4 mol% Sb2O3, whereas the activation energy for the ionic conduction remained unchanged for 4 to 10 mol% Sb2O3‐doped specimens. These results were interpreted in terms of the oxygen vacancy concentration and the distortion of the tetragonal structure. The electron conductivity and its oxygen pressure dependence decreased with increasing Sb2O3 content. The fact that Sb5+ is partially reduced by excess electrons in heavily doped β specimens at low oxygen pressures is explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.