Abstract
In order to respond to soaring public concern about environmental protection, various biodegradable polymers have been developed. The present paper reports the electrical conduction and breakdown properties of various biodegradable polymers such as poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), polycaprolactone butylene succinate (PCL-BS), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polyhydroxybutyrate/valerate (PHB/V) in comparison to those of low-density polyethylene (LDPE). While the permittivity and conductivity of PLLA and PETS are comparable to LDPE, those of PCL-BS and PBS are much higher. The conductivity is also higher in PBSA. This is because PLLA and PETS are in the glass state at room temperature, while PCL-BS, PBS, and PBSA are in the rubber state. Furthermore, PLLA and PETS show a strong temperature dependence of the conductivity, which is divided into two or three regions, and they also show thermally stimulated polarization or depolarization current around their respective glass transition temperatures. In contrast to the large difference in conductivity among different kinds of samples, all the polymers tested have almost similar impulse breakdown strength at room temperature. As for dc or ac breakdown strength, PLLA and PETS show a relatively higher strength than PCL-BS and PBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.