Abstract

Preface. 1 General concepts . 1.1 Introduction. 1.2 Conduction mechanism. 1.3 Chemistry and the energy diagram. 1.4 Disordered materials and the Meyer-Neldel Rule. 1.5 Devices. 1.6 Optoelectronics/photovoltaics. 2 Two-terminal devices: DC current . 2.1 Conductance. 2.2 DC current of a Schottky barrier. 2.3 DC measurements. 3 Two-terminal devices: Admittance spectroscopy . 3.1 Admittance spectroscopy. 3.2 Geometrical capacitance. 3.3 Equivalent circuits. 3.4 Resistor SCLC. 3.5 Schottky diodes. 3.6 MIS diodes. 3.7 MIS tunnel diode. 3.8 Noise measurements. 4 Two-terminal devices: Transient techniques . 4.1 Kinetics: Emission and capture of carriers. 4.2 Current transient spectroscopy. 4.3 Thermally stimulated current. 4.4 Capacitance transient spectroscopy. 4.5 Deep-level transient spectroscopy. 4.6 Q-DLTS. 5 Time-of-flight . 5.1 Introduction. 5.2 Drift transient. 5.3 Diffusive transient. 5.4 Violating einstein's relation. 5.5 Multi-trap-and-release. 5.6 Anomalous transients. 5.7 High current (space charge) transients. 5.8 Summary of the ToF technique. 6 Thin-film transistors . 6.1 Field-effect transistors. 6.2 MOS-FET. 6.3 Introducing TFTs. 6.4 Basic model. 6.5 Justification for the two-dimensional approach. 6.6 Ambipolar materials and devices. 6.7 Contact effects and other simple nonidealities. 6.8 Metallic contacts in TFTs. 6.9 Normally-on TFTs. 6.10 Effects of traps. 6.11 Admittance spectroscopy for the determination of the mobility in TFTs. 6.12 Summary of TFT measurements. 6.13 Diffusion transistor. Appendix A A Derivation of Equations (2.21), (2.25), (6.95) and (6.101) . Bibliography . Index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call