Abstract

We have studied the defects introduced in n-type 4H-SiC during sputter deposition of tungsten using deep-level transient spectroscopy (DLTS). Current-voltage and capacitance-voltage measurements showed a deterioration of diode thermionic emission characteristics due to the sputter deposition. Two electrically active defects E0.29 and E0.69 were introduced. Depth profiling revealed that sputter deposition increases the concentration of the native Z1 defect. A comparison with prominent irradiation and process induced defects showed that the E0.29 was unique and introduced during sputter deposition only. The E0.69 may be silicon vacancy related defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.