Abstract

We have used deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS) to characterize the electrically active point defects introduced in n-type gallium arsenide by electron beam exposure prior to Schottky metallization. The GaAs crystals were exposed to incident electrons at sub-threshold energies which are deemed low and insufficient to form defects through ion solid interactions. DLTS revealed a set of electron traps different from those commonly observed in n-GaAs after particle irradiation. These different signatures from the same radiation type suggest that different mechanisms are responsible for defect formation in the two electron irradiation processes. An analysis of the conditions under which the defects were formed was done to distil a number of possible defect formation mechanisms using the experimental evidence obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.