Abstract

In this work high quality crystalline In(1_x)Sb(x) nanowires (NWs) are synthesized via a template-based electrochemistry method. Energy dispersive spectroscopy studies show that composition modulated In(1-x)Sb(x) (x approximately 0.5 or 0.7) nanowires can be attained by selectively controlling the deposition potential during growth. Single In(1-x)Sb(x) nanowire field effect transistors (NW-FETs) are fabricated to study the electrical properties of as-grown NWs. Using scanning gate microscopy (SGM) as a local gate the I(ds)-V(ds) characteristics of the fabricated devices are modulated as a function of the applied gate voltage. Electrical transport measurements show n-type semiconducting behavior for the In0.5Sb0.5 NW-FET, while a p-type behavior is observed for the In0.3Sb0.7 NW-FET device. The ability to grow composition modulated In(1-x)Sb(x) NWs can provide new opportunities for utilizing InSb NWs as building blocks for low-power and high speed nanoscale electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.