Abstract

Investigations of dielectric properties of a newly developed enamel wire insulation created by adding chromium (III) oxide (Cr2O3) filler to polyamide-imide enamel base are presented. Results of measurements of electrical conductivity and complex permittivity at various temperatures as well as surface potential decay are discussed and compared with corresponding properties of standard enamel insulation. Contributions of different polarization relaxation processes in both enamels are examined based on the obtained master curves of dielectric response. In addition, the properties of chromium oxide filler are characterized separately and utilized further for analyzing its impact on the performance of enamel wire insulation by means of computer simulations. The experimental and simulated results demonstrate that the introduction of chromium oxide yields changes in the electrical properties that allow for mitigating the voltage stress in a wound insulation system. Furthermore, a correlation between the obtained results and the earlier described improved resistance to partial discharge activity of the chromium oxide filled enamel is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.