Abstract
ABSTRACTRough-surface polycrystalline silicon films have been used for fabrication of electrically erasable-programmable read-only-memories (EEPROM). Silicon-Rich Oxides (SRO), also known as semi-insulating polycrystalline silicon (SIPOS), have been recommended for use as electron injectors. The advantage of SRO as injectors is that both the bottom and top surfaces of the film can be used to obtain high field enhancement. An ultra-thin multi-layer structure of silicon and silicon dioxide has been fabricated by low pressure chemical vapor deposition (LPCVD). High resolution TEM shows alternating layers of 50 A thick SiO2 and polycrystalline Si (grain size ∼ 80 A) films were deposited and MOS capacitors using this multilayer dielectric were studied to understand their electrical characteristics. Both I-V and C-V measurements show that the Fowler-Nordheim tunneling current is proportional to the number of polycrystalline layers. The “turn-on” voltage of the tunneling current is determined by the thickness of first SiO2 layer, and the effective dielectric constant varies from 3.9 to 9.1, proportional to the number of poly-Si layers within the multi-layer structure (MLS). For a 350 Å stack (7 layers), the interface trap density, Dit, was 3×1010 traps/cm2, and the effective dielectric constant was roughly 9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.