Abstract

The electrical characteristics of Pt-ZnO Schottky nano-contact have been studied. Well aligned ZnO nanorod arrays were synthesized by two-step wet-chemical method. A Pt-coated conducting probe of atomic force microscope was placed on the head face of the ZnO nanorod, thereby forming a Pt-ZnO nano-contact. The I–V characteristic curve shows that the Pt-ZnO nano-contact exhibits rectifying effect, like a Schottky diode with an ideality factor of 3.2 and a reverse-bias breakdown voltage more than −10 V. The study suggests that a high electric field is induced on the ZnO beneath the contact point when a bias voltage is applied, hence, the Schottky barrier thickness is decreased, and results in easier tunneling across the Pt-ZnO interface and a large ideality factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.