Abstract

A Microbial Fuel Cell (MFC) is an electrochemical system that generates energy utilizing waste as a substrate and the results of microbial metabolism processes. This research utilizes yeast fermented cassava waste as a substrate to determine the electrical characteristics of PEM in the form of a chitosan-carrageenan membrane and salt bridge. The cassava waste is from the waste produced in the manufacture of tapioca flour. A dual-chamber MFC made of acrylic with a size of 8x8x10 cm is used. Cassava waste substrate with carbon electrodes would be in the anode compartment, and seawater electrolyte with Cu(Ag) fiber electrodes would be in the cathode compartment. Each measurement holds ±250 ml in each compartment. The MFC system consists of 10 cells and is analyzed every hour for 120 hours using a multitester. According to the results of the research, cassava waste (liquid and onggok) can be used as a substrate in the MFC system, which has the potential to produce alternative electrical energy. Compared to salt bridges, the use of PEM in the form of chitosan-carrageenan membranes produces more significant and better electrical characteristics. However, the chitosan-carrageenan membrane is still less suitable in the long term than the salt bridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.