Abstract

In this work, we focused on the analysis of implantation-induced defects, mainly small interstitial clusters (ICs) and {311} defects introduced in n-type Si after ion implantation using deep level transient spectroscopy (DLTS). Silicon ions (at 160 keV or 190 keV) of fluences ranging from (0.1–8.0) × 1013 cm−2 have been implanted into n-type Si and annealed at temperatures between 500 °C and 800 °C specifically to create small ICs or {311}s rod-like defects. In samples dominated by small ICs, DLTS spectra show prominent deep levels at Ec − 0.24 eV and Ec − 0.54 eV. After increasing the fluence and temperature, i.e., reducing the number of small ICs and forming {311} defects, the peak Ec − 0.54 eV is still dominant while other electron traps Ec − 0.26 eV and Ec − 0.46 eV are introduced. There were no observable deep levels in reference, non-implanted samples. The identity and origin of all these traps are interpreted in conjunction with recently developed predictive defect simulation models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call