Abstract

Experimental and modeling studies on electrical breakdown in water in submillimeter gaps between pin and plane electrodes have been performed. Prebreakdown, breakdown and recovery of the water gaps were studied experimentally by using optical and electrical diagnostics with a temporal resolution on the order of one nanosecond. By using Mach–Zehnder interferometry, the electric field distribution in the prebreakdown phase was determined by means of the Kerr effect. Electric fields values in excess of the computed electric fields, which reach >4 MV cm−1 for applied electrical pulses of 20 ns duration, were recorded at the tip of the pin electrode, an effect which can be explained by a reduced permittivity of water at high electric fields. Breakdown of the gaps, streamer-to-arc transition, was recorded by means of high-speed electrical diagnostics, and through high-speed photography. It was shown, through simulations, that breakdown is initiated by field emission at the interface of preexisting microbubbles. Impact ionization within the micro-bubble's gas then contributes to plasma development. Experiments using pulse–probe methods and Schlieren diagnostics allowed us to follow the development of the disturbance caused by the breakdown over a time of more than milliseconds and to determine the recovery time of a water switch. In order to trigger water switches a trigger electrode with a triple point has been utilized. The results of this research have found application in the construction of compact pulse power generators for bioelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call