Abstract

This paper describes a technique suitable for investigating the electromechanical breakdown properties of erythrocyte cells. The cells were exposed to square wave electric pulses of precise duration and voltage. The erythrocytes were suspended in normal isotonic saline between two opposing platinum electrodes. A red LED light source and photodiode detector system were positioned orthogonally to the electrodes to record changes in the light transmission that occur immediately after applying an electric pulse. The light transmitted through the electrically treated erythrocyte suspension could be monitored continuously. Experiments were conducted to explore the inter-relationship between the critical voltage and pulse length for haemolysis. Human blood taken from “healthy” donors underwent haemolysis at a critical field strength of 304 kV/m for a 5 μs pulse and 292 kV/m for a 50 μs pulse. The relationship of critical pulse length and critical voltage for the blood samples was found to be inversely linear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.