Abstract

We have developed an electrical-biological hybrid system wherein an engineered microorganism consumes electrocatalytically produced formate from CO2 to supplement the bioproduction of isobutanol, a valuable fuel chemical. Biological CO2 sequestration is notoriously slow compared to electrochemical CO2 reduction, while electrochemical methods struggle to generate carbon-carbon bonds which readily form in biological systems. A hybrid system provides a promising method for combining the benefits of both biology and electrochemistry. Previously, Escherichia coli was engineered to assimilate formate and CO2 in central metabolism using the reductive glycine pathway. In this work, we have shown that chemical production in E. coli can benefit from single carbon substrates when equipped with the RGP. By installing the RGP and the isobutanol biosynthetic pathway into E. coli and by further genetic modifications, we have generated a strain of E. coli that can consume formate and produce isobutanol at a yield of >100% of theoretical maximum from glucose. Our results demonstrate that carbon produced from electrocatalytically reduced CO2 can bolster chemical production in E. coli. This study shows that E. coli can be engineered towards carbon efficient methods of chemical production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call