Abstract

Cardiac tissue engineering has evolved as a potential therapeutic approach to assist cardiac regeneration. Controlling the preferential cell orientation of engineered heart tissues is a key issue in cardiac tissue engineering. Here, we present a novel method to construct a model-engineered cardiac tissue-like structure with anisotropic properties. Our analysis shows that the electro-torque which acts on a cylindrical or rod shape cell is zero whenever the electric field is aligned with one of its principal axes. With the interdigitated–castellated microelectrodes, the induction of dielectrophoresis and electro-orientation can accumulate cells and form a tissue-like structure with orientation along the ac electric field. Both experiments and analysis indicate that a large orientation torque and force can be achieved with appropriate frequency and low conductive medium. Finally, we report basic structural and biophysical anisotropy of electro-oriented structure through electromechanical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.