Abstract
SUMMARY All explanations of the high-conductivity layers (HCL) found by magnetotellurics in the middle or lower crust incorporate a mixture of a low-conductivity rock matrix and a highly conductive phase, for example graphite or saline fluids. In most cases the bulk conductivity of the mixture does not depend on the conductivity of the rock matrix but rather (1) on the amount of high-conductivity material and, in particular, (2) on its geometry. The latter is quantitatively described by the parameter ‘electrical connectivity'. Decomposition of the observed bulk conductivity of the mixture into these two parameters results in an ill-posed problem. Even if anisotropy occurs in the HCL, three output parameters (highly conductive phase fraction, connectivity with respect to the X direction, connectivity with respect to the Y direction) have to be estimated from the two bulk conductivities of the anisotropic HCL. The additional information required for solving this problem is provided if instead of single-site data the conductivities from many field sites are evaluated: a sample distribution of the conductivity can then be obtained. Ensembles of random networks are used to create theoretical distribution functions which match the empirical distribution functions to some extent. The use of random resistor networks is discussed in the context of other established techniques for the treatment of two-phase systems, such as percolation theory and the renormalization group approach. Models of embedded networks explain the discrepancy between ‘small’ anisotropy (2-3) on the laboratory scale and large anisotropy (10-100) found in electromagnetic field surveys encompassing volumes of several cubic kilometres. Strong anisotropy can indicate low electrical connectivity, and a possible explanation is that a network stays close to the percolation threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.