Abstract

Porous ceramic fiber composites were coated with pyrolytic carbon by the decomposition of propane in a nitrogen atmosphere at 900°C. The amount of carbon coating was varied through adjusting deposition time to tailor the electrical conductivity of the carbon-coated composites. The electrical and thermal conductivity of the composites were measured at room temperature using a two-point method and a hot-wire method, respectively. Up to 7 wt% pyrolytic carbon, the electrical conductivity σ is linearly increased to 0.02 S/cm and well fitted by the effective conductivity according to the parallel rule of a mixture σ eff = Σ Χ i ·σ i with a conductivity of pyrolytic carbon σ c= 20 S/cm .The thermal conductivity of the uncoated and coated composites is in the range 0.065-0.075 W/mK and little affected by carbon coating presumably owing to the small amount of coated carbon in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call