Abstract

This paper proposes a multi-carrier energy system or energy hub in which natural gas and electricity resources are used as inputs. The output demand profile includes electrical, heating and cooling energy, which is evaluated in four seasons. The significant differences in simulations and evaluation of the considered energy hub in different seasons have led to climate variation, resulting in higher electrical energy consumption in warmer seasons than thermal energy, while it is contrariwise in the cold season. When the customers are willing to participate in the demand response programs, total energy consumption decreases, and this can only change the pattern of customer consumption in the warmer seasons. A mixed-integer linear programing (MILP) formulation for this optimization problem is proposed and solved using the CPLEX solver in general algebraic modeling system (GAMS). Simulations of the energy hub system, including renewable wind and solar sources, will confirm and verify that the model provided represents a growth in energy hub profit, reducing the cost of purchased power from electricity grid as well as decreasing cost of social welfare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.