Abstract

The paper presents a new approach in the field of metal–matrix composite characterisation where an electrical conductivity measurement was used to calculate the electron part of composite thermal conductivity by using the Wiedemann–Franz law. The electrical and thermal conductivities of the composite were characterised and their relationship was analysed. Results showed that in comparison with simple analytical models, this method can also be used for predicting the thermal conductivity of the copper matrix–continuous carbon fibre composite in a transverse direction. The unidirectional composite was produced by diffusion bonding and contained 40–60 vol.% of unidirectional fibres. Experiments were performed in directions parallel and normal to the fibre orientation and showed that with an increasing ratio of fibre volume, both thermal and electrical conductivities decreased from 221.6 W/m·K to 38.7 W/m·K and from 35.8 MS/m to 5.3 MS/m, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.