Abstract

The tight-binding Hamiltonian model and the Green’s function formalism have been employed to calculate the temperature dependent electrical and electronic thermal conductivities of metal and few-layer armchair graphene nanoribbon semiconductors and the results were compared with the mono-layer system. It was observed that due to the overlapping of the nonhybridized p z orbital perpendicular to the sheets, increasing the layers of the systems causes the conductivities of the layers to decrease. Also, these quantities are calculated for three different values of interlayer hopping of the nonhybridized p z orbitals. The results show that in low temperatures, the electrical and thermal conductivities of the system increase when the interlayer hopping term is increased. However, by increasing the temperature, the curves representing electrical conductivities converge to the same value while thermal conductivity decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.