Abstract

Performance of AlGaN/GaN heterostructure field-effect transistors (HFETs) with recessed gate was investigated and compared with non-recessed counterparts. Optimal dry etch conditions by plasma assisted Ar sputtering were found for ∼6 nm gate recess of a 20 nm thick AlGaN barrier layer. A decrease of the residual strain after the gate recessing (from −0.9 GPa to −0.68 GPa) was evaluated from the photoluminescence measurement. The saturation drain current at the gate voltage VG = 1 V decreased from 1.05 A/mm to 0.85 A/mm after the recessing. The gate voltage for a maximal transconductance (240−250 mS/mm) has shifted from −3 V for non-recessed HFETs to −0.2 V for recessed counterparts. Similarly, the threshold voltage increased after the gate recessing. A decrease of the sheet charge density from 1 × 1013 cm−2 to 4 × 1012 cm−2 at VG = 0 V has been evaluated from the capacitance measurements. The RF measurements yielded a slight increase of the cut-off frequencies after the gate recessing. All these indicate that the gate recessing is a useful tool to optimize the AlGaN/GaN HFET performance for high-frequency applications as well as for the preparation of normally-off devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call