Abstract

IntroductionWe analyzed data of 27 professional basketball players to prove cardiac remodeling referring echocardiographic parameters, cardiopulmonary exercise testing (CPET), and 12-lead electrocardiogram (ECG) analyses. The aim of our study was to present different characteristics in the athletes, on the one hand signs of a high vagal tone in the 12-lead ECG as criteria of early repolarization (ER), furthermore echocardiographic remodeling parameters and finally the performance in CPET. Therefore, we divided the cohort into a group with signs of ER pattern in the 12-lead ECG and without these criteria and presented the differences in detail.Materials and MethodsThis was a single-center, retrospective study performed in 27 professional basketball players (age: 26.5 ± 7.5 years, male: 27, height: 197.2 ± 12 cm, weight: 100 ± 17 kg, BMI: 25.7 ± 3.4 kg/m2). All participants underwent a sports medicine checkup, ECG analysis, transthoracic echocardiographic examination, and a CPET on a cycle ergometer between 2015 and 2019 during their pre-season preparation time. All individuals were healthy people without cardiological advance anamnesis. After assessment, two groups were built based on electrocardiographic criteria of ER pattern and a group without these criteria and compared against each other for parameters of echocardiographic assessment, CPET, and 12-lead ECG analysis. Data were analyzed with Minitab statistic program (Minitab Inc., State College, PA, United States) and Graph Pad Prism 8.2.1 (279; Graph Pad Software, San Diego, CA, United States) using ANOVA testing with post-hoc testing and unpaired t-testing (p ≤ 0.05).Retrospectively additional information was collected referring to the management of training sessions, recovery time, and nutrition by interviewing the athletic training staff in order to understand the principles for individual athlete’s training management and physiological and cardiopulmonary interactions.ResultsComparing professional basketball players with ER pattern to those with no ER pattern, significant differences were found for CPET, echocardiographic, and ECG analysis (p < 0.05). Absolute and relativized peak oxygen uptake (VO2 peak; ER 4120 ± 750 ml/min (39 ± 5.4 ml/kg/min) vs. non-ER 3556 ± 393 ml/min (37.2 ± 5.3 ml/kg/min), p = 0.018) and maximum workload during CPET (ER 310 ± 51.5 Watt (2.94 ± 0.35 W/kg) vs. non-ER 271 ± 32 Watt (2.85 ± 0.49 W/kg), p = 0.026) was higher in athletes with an ER pattern. Furthermore, ER pattern athletes showed a higher enddiastolic left ventricular diameter (LVedd; ER 58.3 ± 7.9 mm vs. non-ER 53.6 ± 3.6 mm, p = 0.048) and a significantly enlarged left atrial (LA) endsystolic diameter (ER 23.33 ± 2.71 mm vs. non-ER 20.47 ± 2.29 mm, p = 0.006) as well as a significantly enlarged right atrial (RA) endsystolic diameter (ER 23.42 ± 2.15 mm vs. non-ER 20.93 ± 3.28 mm, p = 0.033). Significant differences between the two compared groups could be revealed for left ventricular mass Index (LVMI gr/m2; LVMI ER 113 gr/m2 ± 17.5 vs. LVMI non-ER 91.3 gr/m2 ± 15.1, p = 0.002), but no significant differences for the relative wall thickness were found (RWT; RWT ER 0.49 ± 0.11 vs. RWT non-ER 0.38 ± 0.06, p = 0.614).ConclusionProfessional basketball players with criteria of ER pattern showed different results in CPET and cardiac remodeling as athletes with no ER pattern. These findings should encourage the athletic training staff to emphasize the quality of an individual training schedule for each athlete based on the cardiopulmonary pre-season sport medicine checkup. Nevertheless, echocardiographic findings, ER pattern, and performance in CPET have to be interpreted referring the sport-specific and athlete’s ethnical background.

Highlights

  • We analyzed data of 27 professional basketball players to prove cardiac remodeling referring echocardiographic parameters, cardiopulmonary exercise testing (CPET), and 12-lead electrocardiogram (ECG) analyses

  • In 12-lead ECGs evaluation, five athletes (18.5%) showed a sinus bradycardia at rest and 12 athletes (44.4%, five basketball players of black origin and seven athletes of white Caucasian and American origin) had an early repolarization (ER) pattern according to our defined ER standard (Macfarlane et al, 2015; Aagaard et al, 2016; Sharma et al, 2017)

  • There were no statistical differences concerning the QTc intervals comparing the athletes with and without ER pattern (ER QTc 404 ± 27 ms vs. non-ER 409 ± 15 ms, p = 0.55) and no statistical differences between the heart rate at rest (ER 66 ± 10 bpm vs. non-ER 72 ± 12 bpm, p = 0.14) and the maximum heart rate at the peak workload testing (ER 172 bpm ± 10 vs. non-ER 165 ± 15 bpm, p = 0.19) between the two different groups could be detected. Both groups reached at the peak workload a similar level of the oxygen pulse at a respiratory exchange rate reaching RER > 1.15 (ER 23.9 ± 4.1 ml vs. non-ER 21.6 ± 2.5 ml, p = 0.08)

Read more

Summary

Introduction

We analyzed data of 27 professional basketball players to prove cardiac remodeling referring echocardiographic parameters, cardiopulmonary exercise testing (CPET), and 12-lead electrocardiogram (ECG) analyses. The association between the occurrence of heart rhythm abnormalities, such as the occurrence of AF and the peak performance during cardiopulmonary exercise testing (CPET), has been reported in different groups of athletes, mainly focused on endurance sports (Maron and Pelliccia, 2006; Aizer et al., 2009; Sorokin et al, 2011; Guasch et al, 2013; Wilhelm, 2014). We analyzed data of 27 male professional basketball players to detect cardiac remodeling referring echocardiographic parameters, CPET and ECG analysis, focused on this moderate dynamic sport category, which combines strength and endurance components in the aerobic and anaerobic system

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.