Abstract

Various ultrathin oxynitride gate dielectrics of similar thickness (~1.2 nm) fabricated by a combination of an in situ steam generated and remote plasma nitridation treatment (RPN), an RPN with rapid thermal NO annealing (RPN-NO), and an RPN with rapid thermal O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> annealing (RPN-O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) are reported in this paper. The RPN-NO gate dielectric films show superior interface properties including relatively high nitrogen concentration near the poly-Si/oxide interface and smooth interfaces, excellent electrical characteristics in terms of lower leakage current, better electron and hole channel mobility, higher drive current, and significantly improved reliability such as stress-induced leakage current, hot carrier injection, and negative bias temperature instability, compared to other gate dielectrics fabricated by different processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call