Abstract

The results of studying semiconductor structures proposed for the first time and grown, which combine the properties of LT-GaAs with p-type conductivity upon doping with Si, are presented. The structures are {LT-GaAs/GaAs:Si} superlattices, in which the LT-GaAs layers are grown at a low temperature (in the range 280–350°C) and the GaAs:Si layers at a higher temperature (470°C). The p-type conductivity upon doping with Si is provided by the use of GaAs(111)A substrates and the choice of the growth temperature and the ratio between As4 and Ga fluxes. The hole concentration steadily decreases, as the growth temperature of LT-GaAs layers is lowered from 350 to 280°C, which is attributed to an increase in the roughness of interfaces between layers and to the formation of regions depleted of charge carriers at the interfaces between the GaAs:Si and LT-GaAS layers. The evolution of the photoluminescence spectra at 77 K under variations in the growth temperature of LT-GaAs is interpreted as a result of changes in the concentration of GaAs and VGa point defects and SiGa–VGa, VAs–SiAs, and SiAs–SiGa complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.