Abstract

In this study, we fabricated copper(II) complex/n-Si/Au organic-inorganic heterojunction diode by forming copper(II) complex thin film on n-type silicon. A direct optical band gap energy values of the copper(II) complex (Cu2C34H34N2O21Cl4) thin film on a glass substrate was obtained as Eg=2.98 eV. The current-voltage (I-V) measurement of the diode was carried out at room temperature and under dark. The ideality factor n and barrier height ϕb values of the diode were found to be 3.17 and 0.71 eV, respectively. The diode indicates non-ideal current-voltage characteristics due to the high ideality factor greater than unity. The series resistance Rs and ideality factor n values were determined using Cheung’s method and obtained as 5.54 kΩ and 3.81, respectively. The capacitance-voltage (C-V) measurements of the diode were performed at different frequency and room temperature. From the analysis of the C-V measurements carrier concentration Nd, diffusion potential Vd and barrier height values ϕbc-v were determined as 2.79x1015 cm-3, 1.078 V, 1.31 eV, respectively. From the I-V measurements of the diode under 1.5 AM illumination, short circuit current (Isc) and open circuit voltage (Voc) have been extracted as 12.8 µA and 153 mV, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call