Abstract
AbstractNominally undoped cubic GaN epilayers deposited by rf-plasma assisted molecular beam epitaxy on semi-insulating GaAs substrates were investigated by electric and photoelectric spectroscopical methods. As a consequence of the existence of deep levels in the GaAs-substrate itself, special care has to be taken to separate the contributions of the substrate from that of the cubic GaN epilayer in the various spectra. Two different contact configurations (coplanar and sandwich structures) were successfully used to perform this separation. In the cubic GaN epilayer a trap with a thermal activation energy of (85±20)meV was found by thermal admittance spectroscopy and thermal stimulated currents. Optical admittance spectroscopy and photocurrent measurements furthermore revealed defects at EG -(0.04-0.13) eV, EG-(0.21-0.82) eV and two additional deeper defects at 1.91 Ev and 2.1 eV, respectively. These defect related transitions are very similar to those observed in hexagonal GaN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.